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Abstract-In this paper the concept and use of weighting functions are extended to enclosures having 
walls and roofs of composite construction. The theory developed has been used to compute the 
weighting functions and thermal response in a few typical cases, such as cavity walls and insulated 

walls with a cladding of external or internal insulation. 

NOMENCLATURE 

A 12, constants defined in the text, n = 1, 
2 - 

-h(t), t&pk;ature response of the indoor 
air to unit step change of outside 
temperature [degC] ; 

F(t), function of time defining an arbitrary 
outdoor temperature variation; 

G, thermal capacity of the air expressed 
in terms of per unit area of the 
exposed walls [kcal/ms degC] ; 

Ci, thermal capacity of the internal 
mass expressed in terms of per unit 
area of the exposed walls [kcal/me 

degC1; 
81 (x, t), temperature at position x in the 

external layer at time t [“Cl; 
132 (x, t), temperature at position x in the 

second layer at time t [“Cl ; 
03 (x, t), temperature at position x in the 

third layer at time t [“Cl ; 

b(t), temperature of the inside air [“Cl; 

e,,(t), temperature of internal mass [“Cl; 

L/Ri, inside wall surface heat-transfer co- 
efficient [kcal/me h degC] ; 

l/Ro, outside wall surface heat-transfer 
coefficient [kcal/m2 h degC] ; 

1/R% heat-transfer coefficient at the sur- 
face of internal mass [kcal/ma h 

de&l ; 
kl, kz, thermal diffusivities of the respective 

ks, layers [m2/h]; 

Kr, K2, thermal conductivities of the respec- 

K3. tive layers [kcal/m h degC]; 
lr,ls - II, thicknesses of the consecutive layers 
13-h 

u, 

t, 

T, 

X, 

t, 

ril, 

P, 
h(t), 
*(PI, 

fi n, 

x&d, 
Xl, x2, 

Yl, Ye, 

[ml; 
conductance of the air cavity [kcal/ms 
h degC]; 
time [h]; 
thermal time constant [h]; 
position in the layer [m]; 
variable of integration; 
number of air changes per hour 

[l/N; 
Laplace transform parameter; 
weighting function [l/h] ; 
function of Laplace transform para- 
meter p ; 
roots of the transcendental equation 
occurring in the text, n = 1,2, . . . ; 
function of the roots pn; 

constants defined in the text; 

L2 = 12 - 11; 

L3 = h-12. 

INTRODUCTION 

IN THE previous paper [l], the theory and con- 
cept of weighting functions was developed for 
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enclosures with walls and roofs of homogeneous 
construction. To complete the investigation on 
thermal response by means of weighting func- 
tions, the theory will be extended to composite 
structures. The situation considered is of prac- 
tical importance as most of the enclosures are 
bounded by walls having more than one layer 
of different material composition. In this paper, 
for the sake of mathematical brevity, we again 
refer to the paper of Pratt and Ball as [Z]. 

RESPONSE TO A UNIT STEP PULSE 
Let us consider a structure having composite 

walls and roof of three layers, the thicknesses 
of which are 11, 13 - Ii, 13 - 12, and conduc- 
tivities Kr, K2, K3 respectively (Fig. 1). We 

B,(f) 

x 

FIG, 1 Diagrammetric representation of a composite 
wall. 

assume that there is perfect thermal contact at 
the interfaces. The system is considered at a 
temperature 0°C at t = 0 when the outside 
temperature instantaneousIy rises to 1 “C. The 
equations governing the flow of heat in an 
enclosure following a unit step function of 
temperature are : 

- 

_&a; = $1 - 

fh = fb, 

02 = es, 

O<X<ll, t>O 0) 

I1 < X < 13, f > c\ (2) 

I3 <x < 673, t > 0 (3) 

K3 i!. = i (e3 - e2), x = S, 

ci d+ ‘-_ i- (ei - e,,), 
s 

t > 0 (4) 

t > 0 (5) 

r>O (6) 

t > 0 (7) 

r > 0 (8) 

t > 0 (9) 

t>O (10) 

iI (e, - et) + m ca (1 - e,) = ks (eB - e,,), 
1 

x = I3, f > 0 (11) 

SOLUTION OF THE EQUATIONS 
The method of solution adopted here is the 

same as in Part I. Taking Laplace-transform of 
the equations (l)--(1 I), we have after elimination 
and simplification 

(1 -tpCr&) (4Q3K3Ri-- m Ca Rz [y2 (1 - a3 K3 Rr) exp (-- a3 L3) - yr (I-!- a3 K3 Ri) exp (a3 L3)l: 
- 

~-. 
p (1 i- p Ct R8) [UZ exp (-- a3 L3) - ~1 exp (a3 L311 - P W) EYZ (1 --a3 K3 Ra) exp (- a3 L3) 

- yl(1 + ~3 K3 Ri) exp (a3 L3)1 
(12) 
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where 

Yl = x2 (1 - C2) exp (- ~2 L2) + x1 (1 + C2) exp (a2 Lo) 1 
~2 = x2 (1 + C2) exp (- ~2 L2) + XI (1 - C2) exp (a2 L2) 

XI = (al KI Ro + Cl) sinh al 11 + (1 + a2 K2 RIJ) cash al ZI 

x2 = (al Kl Ro - Cl) sinh al II + (1 - a2 K2 Ro) cash al 11 

Cl = 

L2 = 12 - 11, LB = 13 - 12 

and 

#(P> = (2 + m Ca Rt) (1 + p Ct R8) - 1 

After inversion of (12) by the method detailed in [2], we get 

where 

A, = (1 ‘>~~3~+rnCaRi 
BnKlRo . t%h -- cos$&------sm--- 

z/W v’(h) 

B&2 r6nL3 
sin ---- cos --~ + cos 

d(k2) Z/W 

Bn K3 Rz BnL2 _.__ 
d(k3) 

cos z/o cos $g - 
fin K; Ri d(Rv’(k2)d . Bn L2 . BnL3 

k3 K2 S’nZ/os1ngF3) - I 

I[ ’ sm 

kz K3 BnL2 

J(k) k3 r2’Os 

t%L2 BnL3 
sin 2~~3 cos d(k3) + 

I)) 

(14) 

(15) 

(17) 
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and 

x(/L> = [(I - G Rs B”,) (2 + m Ca &I + Ct Rs B”, - 21 

KI Ro Bn 11 
m&j sin x) + 

KI Ro 11 Bn 11 Bn Lz b&L3 ~_ 
2 kl ‘OS .TK) ‘OS 2/(kz> sin 1/<G) + 

Bn LB 

I i 
+ 

Bn 11 
- sin ~ cos --__ 

v’\/(W 2/(h) 
cos 2j(klj - 

PnKlRo . /&II 

v’W 

LP K3 t%L2 ILL3 L3K3 v’(k2) . k&L2 flu L2 

2 ,& K2 z ‘(k3) 
cos z/(kz) cos Z/(G) + -wBnx sm ~ d(kz) s’n z/o + 

PnLr PILL3 K3 AL.2 /3,1 L3 

‘In l/(/(2) ‘In \/(k3) - 

BnLe . 13nL3 -____ 
2 fin v’(k2) ‘OS -qm ‘ln Z/(k3) + 

L3 ISnL2 i&l. L3 I K3 d&2) L3 r&L2 . PnL3 

2 1311 d(h) ‘In \/(kz) ‘OS \/(k3) 2 /3, k3 K2 
cos --,-- sm ~ -- f 

Y (ka) d(k3) 

K3L2 Jjn L-2 flnL3 

2 t% d(k3) K2 sin d&j ‘OS \/(k3) 

Pn K3 Ri 

+ .-2/(k3) ’ 

t% 11 
‘OS \/(kl) 

Pn L2 BnL3 _ ~_~_~ sin ~~~ _ co3 _- + 
v’(h) l.4~3) 

LB i3%L2 /&La K3 Lz 

2 8x v’(k3) ‘OS 
AL2 BnL3 

z/(kiJ an l/<k3> + !&i&/(k3) K2 ‘OS z/(G) sin 2/(k3) t 

1 (18) 

I 



TRANSIENT THERMAL RESPONSE OF BUILDINGS-PART II 1327 

+ G&(1 +mGRt) 

kl K2 . rBn II 

[J( ) kz FI ‘In 2/(kl) 

K3 ,& Lz &a LB 

~;CoS~kz)CoS d/o I> + 

-$$ (2 i- m Ca &) [G Rs ,& - T$- (1 - Ci R, /I;) 
12 

,&a KI Ro . Bn II Pd.2 
COS z/(lcz) COS $$j - 

d(h) ~ s1n qqq) 

cos $& - 

- I 

K3 bJe . rBnL.3 

??z ‘OS -Z/(k2) ‘In n) 

and fin are the roots of the equation 

[2 - Ci Rs /I: - (1 - Ct R, B”,) (2 + m Ca Ri)] ((cos $j$ - Ti$ sin $&) x 

K3 . &J.z BnL3 l%LZ 

r3 s*n l/<k2> ‘OS d(k3) + ‘OS T(k2) sin ‘Z/(k3) 

bn K2 Ro 
qkz) cos 

I[ I> 
= 0. 
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In particular the thermal response of an enclosure 
bounded by walls of two layers can easily be 
deduced by putting 11 or IS - 1~ = LB equal to 
zero. 

WEIGHTING FUNCTION 

The theory and concept of weighting function 
of enclosures have been described in Part I of 
this paper [l]. The same concept can now be 
extended to enclosures having composite con- 
struction. The weighting function for this case 
is obtained by differentiating equation (16) with 
respect to t, i.e. 

+F(t) = 5 An exp (- R 0 
n=l xosn) 

where An, &!I,) and & have been defined in 
equations (17), (18) and (19). 

Having calculated the weighting function we 
can use it for the calculation of thermal response 
of the enclosure subjected to arbitrary outdoor 
temperature change F(t) with the help of the 
convolution integral 

CAVITY WALL 

We now consider an enclosure bounded by 
cavity walls. The cavity is of uniform width and 
encloses air which is assumed to be unventilated. 
Since the thermal capacity of air is zero, we can 

reduce the general solution for a three layered 
structure as obtained in (16) to that for cavity 
walls simply by taking the limit as kz -+ co. This 
reduction introduces a parameter u = KsILa, 
which can easily be identified as the conductance 
of the cavity. The heat transfer across the cavity 
has therefore been taken into account through 
a finite conductance u of the air cavity. It has 
been shown [3] that when the width of the air 
cavity exceeds 2 cm, its effective conductance 
remains unchanged and it includes the combined 
influence of convective, radiative and conductive 
heat transfer. With this consideration, u is 
invariant; hence the boundary conditions (6) 
and (8) reduce to 

Kl$=Ksz atx=li, t>O 

which is the same as equations (1.3) and (1.5) in 
Appendix of [2]. 

Let the two embedding layers be of conduc- 
tivities KI and KS, diffusivities kl and ks and 
thicknesses 11 and Is - Is = Ls, respectively. 
The thickness of the air cavity-.is then 
conductivity Ks. The thermal response 
now follows from (16), which reduces to 

* An exp (- /3: t) 
A&) = 1 - c 

n=1 132, x(8?%) 

where now 

bl 11 BnKlRo . Bnll 
cosm- -m sin- 

d/(W 

BnK3Ro Bnh /%&La 

xi 'm S(kl) + -d(ks) ‘OS 2/(kl) I 
__- 

‘OS z/(k3) 

is, KaRt 
--___ 

Z/(h) 

L2 bf 
A&) 

(20) 
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and 

x(pn) = [(I - Ct & 132,) (2 + m Ca Rt) + G &IT, 321 [ (~yg-&sin$$ -I- 

Bn 11 BaKlRo . Bnh L3 
cos 2/o - 2/o - cos $2) + T-& f>(k$ 2 Pn l/(h) 

Ro 11 Is, 11 
- 5-yqK) sinTE) 

i3nL3 ~ 

' 'OS Z/(ks) + 

[(2 + mGRr)(l - GRsPfJ - 11 

11 /AZ I1 Kl Ro Bn 11 Kl Ro 11 

2 /3n d(kl) sin 2/(kl) + 2 Bn 2/(kl) sin i?@ij + mz/(kl) ‘OS 

K3 BnLs 

2 /$(k3) sin ;(i;) + 2 c jTK;(k3) sin $(:;) + g ‘OS -__ d(k3) + l/(ks) 

11 pn 11 Ro 11 -_ 

2Bnfh 
COS$&)+~coS- --Ssln 

z/(h) 2&W . 

v’/(h) . Bn 11 

-- WI z/(kd + pn Rocos z/(kl), Kl 1 
+ Ct Rs (1 + m Ca Rt) 

KlRoBn . &II 

d&l) TZGj 

LKIRo . /%I1 v'(h) . rBnh 

-q&y'"- d/(W KI 
Sin *) + /L Ro cos $& 

) 

COs~~+~~((2+mC.Rc)[GR,8n-~,(1-C~RB~)] +&I 

/% 11 BnKlRo . fin11 

CoSy70-~ z/W YKd ) 
- 

+ Bn RO sin $& 

1329 
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and & are now given by 

[2 - cz R, p”, - (1 ~ Ct R, P",> (2 + m G WI 
KI Ro Pn Pnh 

) 

‘=[I-(l- CiRs/32,)(2 + 

I 

m Ca &)I (23) 

. Bn 11 AL3 rBnK3 . kU3 

s1n z/(kl) 

Bn Ro cos $!) -) sin$$jj = 0. 

THERMAL TIME CONSTANT 
The thermal time constant T of an enclosure 

is defined as the time in which the internal air 
temperature rises to 63 per cent of its final 
steady value. The time constant in a thermal 
circuit is analogous to that in an electrical circuit 
having capacitance and resistance. Now con- 
sidering the expression for the air temperature 
given in (16) and keeping only the first term in 
the series we have 

This form of e,(t) may be considered as a 
sufficiently good approximation since the other 
terms approach zero more rapidly in comparison 
with that of the first term for t 3 T. Therefore 
the time in which air temperature et(t) reaches 
0.63 is given by 

Arexp(- ,8fT) 1 

B? x(P1) e 

from which 

(25) 

An approximate value of the thermal time con- 
stant can be taken as l//3: since A~/B:x(/&) is 
mostly of the order of unity. The values of the 
thermal time constants for the particular cases 
in which numerical computations have been 
carried out are given in Table 1. 

THERMAL RESPONSE 

In the Field Project of this Institution, a few 
full sized test houses of homogeneous and com- 
posite constructions have been built up [l]. 
Insulating materials composed of foam plastic, 
reed board, light weight aggregate, etc., have 
been applied both as external and internal 
cladding on a core of thin masonry. 

With a view to study the relative transient 
response of composite and homogeneous con- 
structions a few typical cases of insulated and 
uninsulated masonry as given in Table 1, are 
chosen. These constructions have been used in 
the test houses and tested for their response 
under unsteady conditions of heat flow. The 
north wall is common with the anteroom and 
hence it is treated as an internal mass (G = 
8 kcal/ms degC). In order to compare the per- 
formance under an idealized conditions of all 
exposed walls, enclosures having no internal 
mass (Ci = 0) are also postulated. 

The thermal response to unit step function of a 
few composite constructions without internal 
mass are shown in Fig. 2. The response of 11.2 
cm (4.5 in) brick wall is very sharp attaining 63 
per cent of the outdoor temperature in only 5 h. 
The time constants of the constructions are given 
in Table 1. Compared to a 22.4 cm (9.0 in) usual 
brick wall, a cavity wall 27.4 cm (11 in) having 
5 cm (2 in) air cavity sandwiched between two 
11.2 cm thick brick layers is seen to function 
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Table 1. Data used for computation of weighting functions 
-- _~ 

Thermal properties of Wali Vof/Exposed C, 
Roots and constants 

materials construction wall area (kcalj (k%f A11 &l 
mz “C) m2degC) ,!& Ba x(&) X@2) 

1. Brick Brick 11.2 cm 0.5 0.15 0 0.49 0.94 0.291 -0.186 
K = 0.87 k&/m h degC ditto 0.6 0.18 10 0.355 0,66 0.134 -0.026 
k = 2.4 x lOma m2/h 

2. Foam plastic Brick 11.2 cm 0.5 0.15 0 0.5 1.10 0.336 -0.36 
K = 0,027 k&/m h degC + 2.54 cm foam 

plastic inside 
k = 3.6 x lOma m2/h ditto 0.6 0.18 10 0.26 0.53 0.073 -0.027 

3. Air cavity Brick 22.4 cm 0.5 0.15 0 0.28 0.78 0.096 -0.123 
D = 5.85 k&/m2 h degC ditto 0.6 0.18 10 0.24 0.48 0.061 -0.019 
Rr = l/6 Cavity wail 0.5 0.15 0 0.25 0.85 0.070 -0.116 

mzh degC/kcal 27.4 cm (air 
cavity 5 cm) 

R, = l/20 ditto 0.6 0.18 10 0.22 0.80 0.049 -0.038 
m8h degC/kcal 

Brick 11.2 cm 0.5 0.15 0 0.16 0.66 0.026 -0.039 
+ 2.54 cm foam 
plastic outside 

ditto 0.6 0.18 10 0.14 0.57 0.02 -0.016 

^. 

Notes: The enclosure is considered unventilated, m = 0. Half of the north walI (22.4 cm brick) together with some 
commodities inside is considered as internal mass, Ct = 8 kcal/ma degC. 

FIG. 2. Response to a unit step temperature of a room without internal mass. 

Ventilation m=O 

3. Brick wall 22.4 cm 
4 Cavi!y wall 27.4 cm with 

air pop of 5 cm 
_.-.._. ~~ 

extermt cladding d 2.54 cm 
foam p&tic 

4 8 12 16 20 24 28 32 36 40 

Time. h 
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Tme. h 

FIG. 3. Response to a unit step temperature of a room with internal mass, 

Ttme, h 

FIG. 4. Weighting functions of a room without 
internal mass. 

FIG. 5. Weighting functions of a room with internal 
mass. 
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Table 2. Thermal time constant, T in hours, of various structures 

_Y = 

Structure m = 0, Cs = 0 m = 0, Ci = IO 
- 

1. Brick 11.2 cm 40 8.38 

2. Brick 11.2 cm + 254 cm 4.8 16.2 
foam plastic inside 

3. Brick 22.4 cm 14.3 18.8 

4, Cavity wall 27.4 cm 17.8 24.4 
(two layers of brick with 
5 cm air cavity) 

5. Brick 11.2 cm + 254 cm 45.2 53.3 
foam plastic outside 

better in damping out the outside fluctuation 
during its transit through the wall. It is also 
observed that a foam plastic cladding, 2.54 cm 
(1-O in) thick, on the exposed side of a 11.2 cm 
(45 in) brick wall is vastly superior to the same 
cladding on the inner side. This confirms the 
well-known fact that an insulating material is 
most effective in attenuating the influence of the 
outdoor temperature variation on the indoor 
climate when made the outside layer in a com- 
posite construction. 

In the presence of internal mass the pattern is 
more or less the same (Fig. 3). The insulating 
efficiency of 254 cm (1 in) foam plastic on the 
inner side of a 11.2 cm (4.5 in), brick wall is 
improved and it becomes almost equivalent to a 
22.4 cm (9.0 in) brick wall. The thermal time 
constants with internal mass are given in Table 
2. The figures compare well with the thermal 
time constants T published earlier by this 
Institute [4], [5]. 

Figures 4 and 5 show the weighting functions 
for enclosures having composite construction 
with an without internal mass. The compared 
behaviour is as discussed above. 
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Retune-Dam oet article, ie concept et l’utilisation de fonctions de ponderation sont etendus aux 
enceintes ayant des murs et des plafonds de construction composite. La theorie d&elopp& a Cte 
employee pour calculer les fonctions de ponderation et la rkponse thermique dans quelques cas 
typiques, tels que des doubles parois et des murs isoles avec un revetement d’isolement exterieur ou 

interieur. 

Zusarnmenfassung-Die Konzeption und die Anwendung der Gewichtsfunktionen wird auf R&time 
ausgedehnt, deren W&de und Diicher aus Schichten zusa~engesetzt sind. Nach der entwickelten 
Theorie wurden die Gewichtsfunktionen und das thermische Verhalten fiir einige typische Falle 
ausgerechnet, nlmlich fur unisolierte W&de eines Raumes und fur solche, die mit einer Siusseren oder 

inneren Isolierschicht bedeckt sind. 
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AmoTcLqaJi-B flamioii cTaTbe nomTne II npmeHemre ~ecoBhn I$~HKI@ pampomparrefrbr 
Ifa orpaHc~errm, cTeHbI 12 ~pbmmr IFoTopbIx mews cnoiwym ~o~ic~py~fqmo. PaapaGoTaHlIan 

Teopm 6bma ACIIOm30BaHa n.m pameTa BeCOBbIX ~y111EI@ II TeIIJIOHOi peartqm B HeCKO- 

2’IbKIIX TRIIWIHbIX CdI)‘qaRX, HaIIpHMep, B GIyqafIX IIOLIbIX CTeH II Il:~OJIIpOBaIIHbIX CTeH IIpH 

MCI[03b:JOBaHALI IJHeIIIHeii WI11 RII~Tpt!IICllfIet IKlO.lllI~~Ii. 


